
Neoplastic-like transformation effect of single-walled and multi-
walled carbon nanotubes compared to asbestos on human lung 
small airway epithelial cells

Liying Wang1,*, Todd A. Stueckle1,2,*, Anurag Mishra1, Raymond Derk1, Terence Meighan1, 
Vincent Castranova1, and Yon Rojanasakul2

1HELD/PPRB, National Institute for Occupational Safety and Health, Morgantown, WV 26505, 
USA

2School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA

Abstract

Accumulating evidence indicates that carbon nanotubes (CNTs) are biopersistent and can cause 

lung damage. With similar fibrous morphology and mode of exposure to asbestos, a known human 

carcinogen, growing concern has arisen for elevated risk of CNT-induced lung carcinogenesis; 

however, relatively little is known about the long-term carcinogenic effect of CNT. Neoplastic 

transformation is a key early event leading to carcinogenesis. We studied the ability of single- and 

multi-walled CNTs to induce neoplastic transformation of human lung epithelial cells compared to 

asbestos. Long-term (6-month) exposure of the cells to occupationally relevant concentrations of 

CNT in culture caused a neoplastic-like transformation phenotype as demonstrated by increased 

cell proliferation, anchorage-independent growth, invasion and angiogenesis. Whole-genome 

expression signature and protein expression analyses showed that single- and multi-walled CNTs 

shared similar signaling signatures which were distinct from asbestos. These results provide novel 

toxicogenomic information and suggest distinct particle-associated mechanisms of neoplasia 

promotion induced by CNTs and asbestos.
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Introduction

Engineered nanomaterials (ENMs), including carbon nanotubes (CNTs), have recently 

emerged as one of the most important classes of nanomaterials having enormous potential to 

initiate the next industrial revolution. According to the National Science Foundation, it is 

estimated that by 2020 nanotechnology will have a $3 trillion impact on the global economy 
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and employ 6 million workers in the manufacture of nanomaterial-based products, 2 million 

of which may be in the United States. CNTs, including single-walled CNT (SWCNT) and 

multi-walled CNT (MWCNT), are widely used in nanotechnology (Roco 2005; Shvedova et 

al. 2005; Hussain et al. 2009). Their unique characteristics provide many benefits to a wide 

number of applications and their use is expected to rapidly grow in industrial and consumer 

products (Donaldson et al. 2010). However, properties of CNT, such as high aspect ratio 

(HAR), bio-persistence and reactive oxygen species (ROS) generation ability, have raised 

concern of asbestos-like adverse effects to human health (Roco 2005; Shvedova et al. 2005; 

Hussain et al. 2009; Donaldson et al. 2010; Murphy et al. 2011). With a HAR, SWCNT and 

MWCNT typically exhibit fibre-like characteristics similar to asbestos, a Group I human 

carcinogen designated by the International Agency of Research in Cancer (Roco 2005; 

Shvedova et al. 2005, Donaldson et al. 2010; Hussain et al. 2009). Given known workplace 

exposure, anticipated widespread use and asbestos-like fibre similarities, it is critical that 

investigations study expected CNT exposure scenarios to adequately assess CNT 

occupational and environmental risk to long-term human health (Aschberger et al. 2010; 

Donaldson et al. 2010).

The lung is the major target organ for airborne ENM exposures. In vivo studies show nano-

scaled SWCNT and MWCNT reaching deep tissue layers of the lung with low clearance. 

Persistence of inhaled ENMs associated with lung cells can last at least 2 months (Muller et 

al. 2005), while ∼90% w/w inhaled MWCNT that penetrate lung tissue can persist in mouse 

lung 6 months post-exposure (Mercer et al. 2012). Persistent retention of HAR particles, 

including CNTs, result in chronic interaction with lung tissues and cells such as small 

airway epithelial cells (SAECs; Donaldson et al. 2010; Mercer et al. 2010; Broaddus et al. 

2011). Such findings have given rise to immediate concern that chronic interactions of these 

persistent HAR nanoparticles with lung cells could potentially pose an elevated risk for 

inducing or promoting carcinogenesis.

Asbestos has been long known to cause pulmonary fibrosis, lung cancer and malignant 

mesothelioma which have been linked to its fibrous shape, Fe ion residues, increased ROS 

production, mutagenicity and chronic inflammation (Kamp 2009; Broaddus et al. 2011). 

Single dose and recent subchronic murine inhalation studies have shown that CNT and 

asbestos can deposit at the bronchial alveolar duct junction and penetrate interstitially with a 

small significant fraction making it to the pleural cavity (Yin et al. 2007; Mercer et al. 2008; 

Mercer et al. 2011). CNT deposition in the lung results in ROS generation, inflammation, 

macrophage recruitment, immune suppression, granulomas and interstitial fibrosis, similar 

to asbestos (Lam et al. 2004; Muller et al. 2005; Shvedova et al. 2005; Mitchell et al. 2009; 

Shvedova et al. 2009; Murray et al. 2012). CNT injected into the abdominal cavity of mice 

at high concentrations resulted in increased inflammation and mesothelioma development 

similar to asbestos (Poland et al. 2008; Takagi et al. 2008; Nagai et al. 2011). A recent 

preliminary study suggested that MWCNT inhalation exposure promotes lung 

carcinogenesis in a murine initiation/promotion tumour model (Sargent et al. 2013). At 

present, no published in vivo studies exist providing conclusive evidence that chronic 

inhalation of CNT at occupationally relevant doses poses a risk for lung carcinogenesis. 

Even though CNTs exhibit asbestos-like qualities, several CNT exposure studies reported 
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potentially different lung burden transport mechanisms (Mercer et al. 2010), transient 

inflammation and rapid onset of fibrosis (Shvedova et al. 2005; Mercer et al. 2008; Porter et 

al. 2010) which conflicts with the hypothesised mechanism for asbestos-related lung disease. 

It is possible that given the unique physicochemical properties of CNT, mechanism(s) for 

lung disease may differ from asbestos and other known fibres (Shvedova et al. 2005; 

Aschberger et al. 2010; Donaldson et al. 2010; Teeguarden et al. 2011). In addition, recent 

work has reported that differences in CNT length, diameter, dispersion status and 

functionalisation impact fate, cellular uptake, persistence and response in murine lung 

models (Mercer et al. 2008; Mercer et al. 2011; Nagai et al. 2011; Wang et al. 2011a). 

Identification of physicochemical properties of fibrous nanomaterials that elicit long-term 

adverse outcomes is critical to further development of safe CNT technology.

Increased need to rapidly screen numerous suspected organic and metallic compounds for 

their ability to induce or promote carcinogenesis has resulted in development and validation 

of subchronic in vitro exposure models for neoplastic transformation (OECD 2007; Creton 

et al. 2012). In vitro neoplastic transformation can indicate a xenobiotic's potential for 

inducing or promoting carcinogenesis which is a complex and multistep process. Syrian 

hamster embryo and Balb/c 3T3 murine cell lines were recently pre-validated for cell 

transformation assays (Vanparys et al. 2011) while validation of a human cell model is 

currently lacking (Creton et al. 2012). Cells undergoing neoplastic transformation typically 

exhibit hallmarks such as altered morphology (i.e. block to cell differentiation), immortality 

via genetic instability, enhanced cancer hallmark cell behaviour and in vivo tumour 

formation (Hanahan & Weinberg 2011; Creton et al. 2012). Given projected development of 

new nanomaterial technologies and increased concerns with risks to human health, in vitro 

screening methods with human cell lines can provide rapid, robust and high-through-put 

assessments for neoplastic transformation potential of nanomaterials.

Recent in vitro investigations have begun to determine lung cell signalling mechanisms 

regulating responses to acute CNT exposures in an attempt to link them to fibrosis and lung 

disease; however, few chronic studies have been performed. Our previous study showed that 

in vitro chronic SWCNT exposure induced malignant transformation of human bronchial 

epithelial cells (BEAS-2B) associated with altered p53 signalling (Wang et al. 2011b). 

Acute in vitro studies compared different physicochemical properties of CNT to asbestos in 

both lung epithelial and fibroblasts. These studies report altered apoptosis, DNA damage, 

inflammation, morphogenesis and activation of number of signalling pathways, all of which 

recapitulate key molecular events involved in asbestos-induced mesothelioma (Sharma et al. 

2007; Chou et al. 2008; Pacurari et al. 2008a; Pacurari et al. 2008b; Lindberg et al. 2009; 

Hirano et al. 2010; Kim et al. 2012; Ponti et al. 2012; Sargent et al. 2012). At present, there 

is a lack of understanding about genome-wide alterations in lung epithelial cell signalling 

mechanisms in response to chronic CNT exposure and whether these signalling mechanisms 

elicit an unstable genome and potential tumourigenesis.

There is an inherent lack of information on CNT-induced transformation of cultured human 

lung epithelial cell compared to asbestos and spherical-shaped carbon black which exhibits a 

minimal cytotoxic effect compared to SWCNT at equivalent mass per area dose (Wang et al. 

2010). To our knowledge, only two previous studies have evaluated the cellular response to 
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chronic exposures to CNT at realistic doses compared to asbestos, a well-known lung 

carcinogen (Thurnherr et al. 2011; Wang et al. 2011b). Such chronic studies are urgently 

needed given increased use of nanomaterials in consumer products, elevated lung disease 

risk observed in in vivo studies, and the inherent lack of mechanistic understanding of CNT-

induced disease (Aschberger et al. 2010; Donaldson et al. 2010; Broaddus et al. 2011).

To address this concern, the present study employed subchronic, environmentally relevant 

exposures of non-tumourigenic human SAECs to dispersed SWCNT, MWCNT, asbestos or 

ultra-fine carbon black (UFCB) to evaluate and compare neoplastic transformation potential 

of these particles in vitro. Based on recent reports and each particle's specific morphological 

characteristics, we hypothesised that subchronic exposure to SAEC at an occupationally 

relevant dose of dispersed CNT would result in neoplastic transformation via different 

signalling mechanisms than what are proposed for asbestos. To test this hypothesis, post-

exposure cell behaviours and whole-genome expression profiling coupled with current 

scientific knowledge database analysis were performed to identify novel mechanisms 

driving neoplastic transformation (Ganter & Giroux 2008). To date, only one study 

compared acute toxicogenomic signatures of human bronchial cells exposed to MWCNT to 

that of asbestos (Kim et al. 2012). In addition, toxicogenomic, protein and cell behavioural 

analyses can assist in phenotypically anchoring each particle with mechanisms promoting 

neoplastic transformation. By linking cell behaviours to genome expression signatures, 

chronic ENM exposure models would not only provide more relevant conditions to the real 

scenario, but their in vitro application also allows one to evaluate which physicochemical 

properties of nanomaterials elicit signalling mechanisms for potential neoplastic 

transformation.

Materials and methods

Preparation of dispersed particles

All tested particles were previously characterised by other studies and their physiochemical 

properties are summarised in Table I. Briefly, SWCNTs, synthesised using high-pressure 

carbon monoxide disproportionate process (HiPCO), were obtained from carbon 

nanotechnology (CNI, Houston, TX). SWCNTs were acid treated to remove a significant 

portion of metal catalyst contaminants. UFCB, SWCNT and MWCNT elemental analysis 

was performed using nitric acid dissolution followed by inductively coupled plasma-atomic 

emission spectroscopy while particle surface area was determined using Brunauer Emmet 

Teller nitrogen absorption-desorption technique at −196°C using a SA3100 Surface Area 

and Pore Size Analyzer (Beckman Coulter, Fullerton, CA, USA). Purified SWCNT 

contained less than 1% w/w of contaminants (Table I; Wang et al. 2011b). MWCNTs were 

provided by Mitsui & Company (MWNT-7, lot #05072001K28) containing 0.41% w/w 

metal impurity (Porter et al. 2010). Both SWCNTs and MWCNTs possessed ≤0.32% Fe and 

≤0.41% Na ion impurities. Crocidolite asbestos (CAS# 12001-28-4) was originally obtained 

from the Kalahari Desert in South Africa by the National Institute of Environmental Health 

Sciences (Research Triangle Park, NC, USA). Crocidolite fibres had a mean length of 10 

μm, mean diameter of 0.21 μm and surface area of 9.8 m2/g (Msiskaetal. 2010). Ultrafine 

carbon black (Elftex 12) was obtained from Cabot (Edison, NJ, USA) and contained <1% 
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w/w metal impurities. All particles possessed surface areas between 9.8 and 43 m2/g except 

for SWCNT which possessed 10–100-fold greater surface area (400–1040 m2/g).

Particles were suspended in phosphate-buffered saline (PBS) to acquire stock solutions of 

0.1 mg/ml. Next, a natural lung surfactant, Survanta (Abbott Laboratories, Columbus, OH, 

USA), was added to UFCB, SWCNT and MWCNT stock solutions to aid in their dispersion. 

The Survanta concentration in particle stock solutions was 150 μg/ml. All particles were 

dispersed using light sonication (Sonic Vibra Cell Sonicator, Sonic & Material Inc., 

Newtown, CT, USA) with the power, frequency and amplitude settings of 130 W, 20 kHz 

and 60% for 10 sec followed by dilution with cell culture medium to exposure dose. Final 

Survanta concentration in exposure medium was 0.15 μg/ml. Our Survanta dispersion 

method was previously optimised for improved dispersion of CNT and UFCB in cell culture 

media to mimic structure size distribution obtained by aerosolisation of dry CNT (Wang et 

al. 2010). Survanta exposure alone and dispersed UFCB does not cause acute cell 

proliferation or cytotoxicity; however, dispersed CNTs exhibited significant increases in 

both proliferation and cytotoxicity compared to non-dispersed agglomerated CNTs (Wang et 

al. 2010; Mishra et al. 2012).

Dimensions and imaging of dispersed particles in medium were determined using field 

emission scanning electron microscopy methods as previously described (Wang et al. 2010; 

Mishra et al. 2012). Briefly, dispersed particles were suspended in medium (0.02 μg/cm2) 

and filtered through polycarbonate filter to collect dispersed particles. Dried samples were 

mounted, gold/palladium sputter coated and imaged at 400 and 30,000 magnification. 

Length and width measurements of >300 particles from three independent replicates were 

performed. Survanta-dispersed SWCNT structure exhibited mean count dimensions of 1.08 

μm × 0.27 μm (Table I; Wang et al. 2010), while MWCNT structure exhibited 5.1 μm × 

0.078 μm mean dimensions (Figure 1; Mishra et al. 2012). Since asbestos readily disperses 

in PBS with light sonication, no Survanta addition was performed. The same concentration 

of Survanta alone (0.15 μg/ml) and PBS alone were used as dispersant or saline (no 

treatment) controls.

SAEC culture and subchronic exposure

Primary human SAECs immortalised with hTERT were kindly provided by Dr. Tom Hei 

(Piao et al. 2005). SAECs were chosen as an ideal model since aspiration of CNT results in 

substantial deposition in terminal bronchioles and alveolar region of exposed mice (Mercer 

et al. 2010). SAECs were cultured in SABM medium supplemented with Clonetics SAGM 

SingleQuots (Lonza, Walkersville, MD, USA) which contained 0.4% v/v bovine pituitary 

extract, 0.1% insulin, 0.1% hydrocortisone, 0.1% retinoic acid, 1% bovine serum albumin, 

0.1% transferrin, 0.1% triiodothyronine, 0.1% epinephrine, 0.1% human epidermal growth 

factor and 0.1% gentamicin. Cells were cultured at 37° C in a humidified 5% CO2 incubator 

during and following exposure.

SAECs were continuously exposed for 6 months to a subtoxic dose (0.02 μg/cm2, equivalent 

to 0.1 μg/ml) of dispersed UFCB, SWCNT, MWCNT or crocidolite asbestos in a six-well 

culture plate in triplicate. Each replicate was exposed and independently assayed throughout 

the study. This relatively low concentration was chosen due to its relevance to in vivo 
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SWCNT and MWCNT exposure dose of 10 μg/mouse previously reported (Stone et al. 

1992; Mercer et al. 2008; Porter et al. 2010). Every 3–4 days exposure media were removed, 

cells were triplicate washed with PBS and resupplied with media dosed with dispersed test 

particles. Cells were passaged weekly at pre-confluent densities using a solution containing 

0.05% w/v trypsin and 0.5 mM EDTA (Invitrogen, Carlsbad, CA, USA). Parallel cultures 

grown in the same background concentration of dispersant or saline medium provided 

passage-matched controls and were designated as DISP and SAL cells, respectively. 

Following long-term exposure, particle-exposed cells were referred to as D-UFCB, D-

SWCNT, D-MWCNT and ASB cells, respectively.

ENM cell uptake and fate determination

Suspended parental SAECs (2 × 104 cells) were seeded onto sterile glass coverslips into a 

24-well plate overnight in triplicate. Cells were exposed to each dispersed particle (0.02 

μg/cm2) or unexposed medium for 24–48 h to evaluate cell uptake and co-localisation with 

major cell organelles. Following exposure, cells were fixed, stained and examined for cell/

particle co-localisation under an Olympus BX-41 scope using dark-field enhanced 

microscopy (CytoViva, Auburn, AL, USA) using previously described methods (Mercer et 

al. 2011). Briefly, cells were PBS washed, fixed in 10% neutral buffered formalin, PBS 

washed again, stained with 0.1% w/v toluidine blue and rinsed thrice in distilled water. 

Stained cells were dehydrated in ethanol, cleared in xylene and mounted to glass slides with 

Permount. Since ENMs possess several attributes ideal for producing high quantities of 

scattered light (Mercer et al. 2011), enhanced dark-field microscopy images ENM scattered 

light compared to low amounts of scattered light from surrounding tissue.

Cell proliferation assays

All cell morphology, cancer hallmark behaviour and genome expression signature 

assessments were performed between 1 and 15 passages post-exposure (Table II). 

Immediately following 6-month exposure, suspended cells were seeded in duplicate at 1 × 

105 cells/well in a 6-well plate and cultured up to 72 h to visually assess proliferation. Cells 

were then digitally photographed using reverse phase contrast on an Olympus IX70 inverted 

microscope equipped with a Retiga 2000R digital camera (QImaging, Surrey, BC).

Following exposure, colony-forming efficiency (CFE) was performed to assess cell 

proliferation using methods for MWCNT exposure (Ponti et al. 2012). Briefly, 300 cells 

were plated in triplicate to 60-mm plates (28.2 cm2 growth area) and cultured for 7 days 

with one medium change occurring on Day 4. Surviving cells were washed in PBS, fixed in 

4% paraformaldehyde, stained with 1% w/v crystal violet, rinsed twice with MilliQ water 

and allowed to dry. Plates with colonies were digitally photographed. Five independent 

experimental assays were performed. Colony counts were visually scored under an inverted 

scope and mean CFE calculated, where CFE (%) = (average treated cells/average of DISP 

cells × 100).

Starting at second passage post-6-month exposure, passage-matched treated and control cells 

were plated in sextuplicate in 100 μl normal growth medium to 96-well plate at 2 × 103 

cells/well and incubated for 24–48 h. Next, 10 μl of WST-1 reagent was added to each well 
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(Mishra et al. 2012) and spectrophotometrically assayed at 450 nm with SpectraMaxPlus 

384 (Molecular Devices, Sunnyvale, CA, USA). To validate that increased mitochondrial 

activity correlated with live cell number, trypan exclusion assay was performed by seeding 1 

× 105 cells in a 6-well plate in duplicate and incubating for 24 and 48 h. Next, cells were 

collected via trypsinisation, stained with trypan blue and counted using a Countess cell 

counter (Invitrogen). A minimum of three independent experiments were performed for both 

WST-1 and exclusion assays. Exclusion assay data were pooled across experiments prior to 

statistical analysis.

Cell morphological transformation assessment

A morphological transformation assay for foci was conducted based on previously described 

methods for MWCNT exposure (Ponti et al. 2012). Briefly, all six exposed cell types were 

seeded at 3 × 104 cells/dish to 60-mm plates in triplicate. Cells were cultured for 14 days 

with a PBS wash and fresh growth medium supplied every 3 days until a uniform monolayer 

was established. Following medium change at Day 14, cell medium was not changed for 1 

week. On Day 21, cells were PBS washed, fixed in 10% formalin and stained with 1% 

crystal violet to visualise foci. The assay was repeated three times and Type III foci were 

scored from each treatment under an inverted microscope using cell transformation criteria 

described by Sasaki et al. 2012. Transformation frequency (TF) was calculated as TF = [foci 

count/(CFE (%) × seeding efficiency × cells seeded × replicate plates)].

Soft agar colony formation assay

All SAEC lines were assayed for anchorage-independent cell proliferation using a 

previously described soft agar assay method (Azad et al. 2010). Briefly, 0.5% w/v agar 

medium was obtained by mixing Difco agar, 15% v/v foetal bovine serum (FBS) and 1% 

gentamicin with 2× concentrate MEM medium (Lonza) at 44° C. Appropriate amounts of 

each growth factor from the SAGM SingleQuots kit (Lonza) that equalled their respective 

normal growth medium concentrations were added to the warm agar since all cell lines did 

not survive in preliminary soft agar assay trials. Next, all SAEC lines were suspended in 

0.33% agar at 1 × 104 cells/well and slowly layered onto precast agar in triplicate into six-

well plates. After 14 days incubation, colonies were examined and digitally photographed 

under light microscopy. Only colonies with >50 μm diameter were scored as positive in five 

replicate photographs per well. A minimum of three independent soft agar assays were 

performed.

Invasion and migration assay

Following exposure all exposed cells were subjected to chemotaxis Transwell invasion and 

migration assays (Azad et al. 2010). Invasion Matrigel Transwell inserts (8 μm pores; BD 

Biosciences) contained a thin layer of Matrigel to simulate extracellular matrix while 

migration control inserts (8 μm pores; BD Biosciences) did not. Briefly, cells were 

suspended in basal SABM medium without SingleQuot growth factors and seeded at 1.5 × 

104 and 3 × 104 cells/insert into the upper chamber of preconditioned Transwell inserts for 

invasion and control inserts for migration, respectively. Duplicate inserts each containing 

250 μl of cell suspension were immediately placed into individual wells containing 750 μl of 

normal SAEC growth medium in a 24-well plate. Invasion and migration assays were 
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cultured for 48 or 24 h, respectively, to assess cell movement from upper to lower chambers. 

Next, a sterile cotton swab was used to remove all non-mobile cells from the inside of each 

insert. Adherent cells on underside of membrane of each insert were fixed, stained with 

Diff-Qik solutions according to manufacturer's instructions, rinsed in water and allowed to 

dry. Lastly, inserts were visualised in five random fields of view and scored under an 

inverted microscope. Three independent experimental runs were carried out for both assays.

Angiogenesis assay

Primary human vascular endothelial cells (HUVECs) were used to assay angiogenic 

potential of conditioned media from transformed cells using a two-dimensional angiogenic 

assay previously described (Azad et al. 2012). Briefly, low-passage parental SAECs and all 

six exposed cell types were plated at 5 × 105 cells/plate into 60-mm plates and held 

overnight. Next, cells were washed in sterile PBS and allowed to culture in 1 ml of fresh 

base SABM medium for 24 h. Conditioned medium was then removed from each cell line 

and frozen at −80° C until needed. HUVEC cells acquired from ATCC were cultured in 

MCDB 131 medium supplemented with 25% v/v heat-inactivated FBS, 0.05% bovine brain 

extract, 0.25% w/v endothelial growth factor, 0.1% heparin, 1% L-glutamine and 1% 

gentamicin. Subconfluent HUVECs between second and seventh passage were suspended in 

a 1:1 ratio mix of SABM conditioned media and HUVEC reduced medium (2.5% dialysed 

FBS). HUVEC suspensions (4.5 × 104 cells/well) were seeded in duplicate onto reduced 

growth factor Matrigel-coated wells in 48-well plates. After 18 h, five replicate photos per 

well were digitally photographed and the number of endothelial cell tube nodes were scored. 

Three independent experimental runs were performed.

mRNA collection, reverse transcription and microarray hybridisation

To determine mechanisms of action driving CNT-driven neoplastic-like transformation, 

collected mRNA from all six exposed cell types at second passage post-exposure was 

subjected to whole-genome expression microarray analysis following MIAME guidelines. 

All exposed and passage control SAECs were seeded in triplicate at 5 × 105 cells to 60-mm 

plates in normal growth medium and incubated in normal growth conditions for 1–2 d. 

Then, sub-confluent plates were lysed with ice-cold TRIzol Reagent (Invitrogen) following 

manufacturer's instructions to collect mRNA. Lysates were then immediately frozen at −80° 

C for 24 h and shipped on dry ice to ArrayStar (Rockville, MD, USA) for mRNA 

processing, microarray hybridisation and probe expression normalisation. On arrival, mRNA 

was extracted following manufacturer's protocol and evaluated for RNA quality and quantity 

using a Bioanalyzer 2100 (Agilent) and Nanodrop ND-1000. mRNA was then reverse-

transcribed with Superscript double-stranded-cDNA synthesis kit (Invitrogen). cDNA 

samples were then amplified, Cy3-labeled with NimbleGen one-colour DNA labelling kit 

and hybridised to NimbleGen whole human genome 12 × 135k microarrays in NimbleGen 

Hybridisation System. Following microarray plate image capture with Axon GenePix 4000B 

(Molecular Devices), images were uploaded into NimbleScan (v2.5), and Cy3 label 

intensities determined. Intensities were quantile normalised using Robust Multichip Average 

method included in NimbleScan. Only genes expressing ≥50.0 normalised intensity in all 18 

samples were subjected to further analysis. All normalised gene expression data were 
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deposited to NCBI Gene Expression Omnibus archive and are accessible via accession 

number (GenBank ID: GSE41178).

Differentially expressed genes and cluster analyses

Differentially expressed genes (DEGs) for each treatment were determined in Agilent 

GeneSpring GX (v11.5.1) by comparing each gene's normalised intensity to DISP SAEC 

control intensity using a t-test (α = 0.05) and a ±2.5-fold change screen. DISP SAECs 

served as an appropriate control since D-SWCNT, D-MWCNT and D-UFCB SAEC cells 

were exposed to lung surfactant and allowed for identification of particle-specific effects. 

Fold change and p-values for each DEG were saved in a tab-delimited text file for upload 

into Ingenuity pathway analysis (IPA) ver. 9.0 (Ingenuity Systems, Redwood City, CA, 

USA).

To further delineate whole-genome expression signature differences between treatments 

using cluster analysis techniques, normalised unscreened fold change data in a tab-delimited 

file were uploaded into MultiExperimental Viewer (Saeed et al. 2006). Due to the size of the 

data set, the lowest 20% of the least variable genes across all treatments were removed from 

the data set. Next, a one-way ANOVA (α = 0.05) was used to identify genes whose 

expression differed among treatments. Both filters resulted in 20,497 probes for cluster 

analyses. Unsupervised hierarchical cluster analysis was performed on screened genes using 

Pearson's correlation and average linkage to develop a dendrogram and fold-change heat 

map. To validate the cluster analysis, the same screened data set was subjected to principal 

component analysis (PCA) to evaluate inter- and intra-sample clustering. The top three 

principal components were used to map all 18 samples in a three-dimensional space.

Ingenuity pathway analysis

DEG data from each treatment were uploaded into IPA for Core Analysis (Ingenuity 

Systems, Redwood City, CA, USA) to determine major alterations in cell functions, gene 

signalling networks (GSNs) and key genome alterations promoting neoplastic 

transformation in CNT-exposed cells. As previously described (Stueckle et al. 2012), 

negative logarithm p-values from IPA were used to rank cellular/molecular functions, 

disease functions, canonical pathways and signalling networks to identify potential genes 

and/or GSNs that promoted neoplastic transformation in D-SWCNT, D-MWCNT and ASB 

SAECs. Gene IDs, t-test p-values and fold expression data in tab-delimited text files were 

uploaded in IPA. Using IPA-generated negative logarithm p-values, score rankings were 

used to rank cellular/molecular functions, disease functions, canonical pathways and 

signalling networks to identify genes and novel signalling pathways potentially promoting 

observed neoplastic transformation. P values and GSN scores reflected likelihood tests of a 

gene occurring in a given pathway versus other pathways based on pure chance. Z scores (≥

±2) were used to make predictions of activation/inhibition of cellular functions, respectively.

To determine potential novel signalling mechanisms and identify differences between CNT- 

and asbestos-induced tumour-promoting signalling, IPA-generated p values and GSN scores 

were determined, which reflected likelihood tests of a gene occurring in a given pathway 

versus other pathways based on pure chance. Initial evaluation of IPA functions and 
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networks identified cancer-related disease and gene signalling functions in CNT-exposed 

cells. Therefore, ranked GSNs were mapped and cancer-related genes and signalling 

pathways were identified. To further depict cancer-related signalling, CNT cancer GSNs 

were created by filtering the DEG data set for those genes with a cancer-related role. Lastly, 

cancer cells typically exhibit increased proliferation, tumour formation, migration, invasion 

and anti-apoptosis abilities. Cell behaviour GSNs (i.e. pro-cancer GSN) were developed for 

each of these phenotypes to assist in identifying signalling patterns. Genes passed the filter if 

they promoted the behaviour and were up-regulated or antagonised the behaviour and were 

down-regulated.

rtPCR confirmation of microarray expression

To confirm microarray gene expression data, a subset of key genes of interest was selected 

to validate their mRNA expression. 5 × 105 cells from each treatment were seeded in 60-

mm2 dishes and allowed to proliferate for 1–2 days. mRNA from sub-confluent cells was 

collected via TRIzol procedures (described above) and stored for 48 h at −80°C prior to 

rtPCR analysis. Intron-spanning primers and probes were designed using ProbeFinder 2.45 

(Roche) and obtained from Operon (Table S1). RNA sample quality was assessed using 

NanoDrop 1000 (Thermo Scientific), reverse transcribed, and amplified using 2720 Thermo 

Cycler (Applied Biosystems) in triplicate. Quantitative rtPCR was conducted on an ABI 

7500. Each thermocycling reaction used 25 μl total volume containing 7.25 μl cDNA, 2.5 μl 

primers and 12.5 μl Roche Taqman Master Mix. Relative expression levels to GAPDH were 

determined using 2−ΔΔct and compared to microarray values using a t-test.

Western blot analysis

Following 6-month exposure, cells were incubated in lysis buffer containing 20 mM Tris–

HCl (pH 7.5), 1% Triton X-100, 150 mM NaCl, 10% glycerol, 1 mM Na3VO4, 50 mM NaF, 

100 mM phenylmethylsulfonyl fluoride and a commercial protease inhibitor mixture (Roche 

Molecular Biochemicals) at 4°C for 20 min. The lysate was collected and determined for 

protein content using the Bradford method (Bio-Rad Laboratories, Hercules, CA, USA). 

Proteins (40 μg) were resolved under denaturing conditions by 10% sodium dodecyl 

sulphate-polyacrylamide gel electrophoresis and transferred onto nitrocellulose membranes 

(Bio-Rad). The transferred membranes were blocked for 1 h in 5% nonfat dry milk in TBST 

(25 mM Tris–HCl, pH 7.4,125 mM NaCl, 0.05% Tween 20) and incubated with the 

appropriate primary antibodies at 4°C overnight. p53, IL-1B and IL8 anti-bodies were 

purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA) while all other antibodies 

were acquired from Cell Signaling Technology (Danvers, MA, USA). Membranes were 

washed twice with TBST for 10 min and incubated with horseradish peroxidase-coupled 

isotype-specific secondary antibodies (Santa Cruz) for 1 h at room temperature. The immune 

complexes were detected by enhanced chemiluminescence detection system (Amersham 

Biosciences, Piscataway, NJ, USA) and quantified using analyst/PC densitometry software 

(Bio-Rad Laboratories, Hercules, CA, USA).
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Statistical analyses

DISP cells served as negative passage control for both cell behaviour and microarray 

statistical comparisons among treatment groups. All cell behaviour assay data were pooled 

from three independent exposure replicates and analysed using one- or two-way ANOVA (α 

= 0.05) to determine differences between chronic exposure treatment groups. Post hoc 

Tukey–Kramer honestly significant difference tests were used to identify those treatments 

that were different from each other. Microarray and rtPCR mRNA expression values for 

each gene were compared using a two-way Student's t-test. All statistical analyses were 

performed in JMP 9.0 (SAS Institute).

Results

Nanoparticle and asbestos uptake in SAECs

Scanning electron microscopy displayed dispersed particles before exposure (Figure 1A) 

while hyperspectral dark-field visualisation of 24-h-exposed SAECs showed that dispersed 

UFCB co-localised in both the cytoplasm and nucleus (Figure 1B). Dispersed SWCNT, 

MWCNT and asbestos exhibited fibre-like morphologies either co-localised in the 

cytoplasm of cells or puncturing the cellular or nuclear membranes. UFCB, SWCNT and 

MWCNT also formed large micron-sized aggregates that appeared to make contact with the 

cell membrane. Adjustment of the focal plane to acquire Z-stack images (data not shown) 

suggested that these large micron-sized particles were potentially lying on top of cells and 

not within the cytoplasm. At equal cell seeding density, more dispersed SWCNT and 

MWCNT particles were observed co-localised with SAECs than asbestos fibres.

Subchronic exposure to D-SWCNT, D-MWCNT and asbestos alters cell growth and 
morphology

After 24 weeks of exposure, D-SWCNT and D-MWCNT cells visually exhibited greater 

proliferation over 48 h (Figure 2A). Both D-SWCNT and D-MWCNT exhibited 

significantly greater CFE (Figure 2B) and morphological transformation evidenced by Type 

III foci than DISP control cells (Figure 2C). Parental SAECs possessed significantly lower 

CFE than all other cells. Type III foci exhibited deep basophilic staining, multilayered 

mounding with different cell orientations and invasive growth at colony edges. Both D-CNT 

SAECs demonstrated cells with numerous intracellular vesicles compared to DISP and SAL 

control cells while ASB periodically displayed this morphological characteristic. Attempts 

to identify these vesicles by staining lipid droplet, endoplasmic reticulum, Golgi apparatus, 

lysosome and peroxisome were all negative (Figure S1). In addition, all six passaged cell 

lines possessed pleomorphic giant cells possibly due to long-term passage. In summary, 

increased CFE, morphological transformation and visual observations of altered morphology 

suggested a moderate CNT-induced lung epithelial morphological transformation.

Chronic SWCNT and MWCNT exposure induces a more aggressive neoplastic-like 
transformation phenotype than asbestos exposure

Cancer hallmark transformation phenotypes of the particle-exposed cells were determined 

by several well-established methods and compared to passaged DISP control cells. D-
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SWCNT, D-MWCNT and ASB cells exhibited significantly greater cell proliferation at 48 h 

compared to SAL, DISP and D-UFCB cells (Figure 3A-1). Similarly, D-SWCNT, D-

MWCNT and ASB cells showed a significant increase in live cell number over 48 h 

compared to SAL and DISP controls. D-UFCB cells displayed a significantly lower number 

of cells compared to controls indicating a reduced ability to attach and proliferate following 

chronic UFCB exposure (Figure 3A-2). A 2-week proliferation analysis during subchronic 

exposure showed that D-UFCB cells recovered by 72 h post-seeding, but exhibited lower 

viable cell counts at 7 days post-seeding than all other treatments (Figure S6).

Next, anchorage-independent cell growth was determined by assessing the number of 

isolated colonies on soft agar to confirm SWCNT- and MWCNT-induced neoplastic-like 

transformation compared to asbestos. D-SWCNT, D-MWCNT and ASB SAECs exhibited 

significant increases in number of colonies formed compared to control SAECs (Figure 3B). 

D-SWCNT and D-MWNCT SAECs displayed a 2.2-fold increase compared to DISP control 

cells, while ASB-SAECs had a significant 1.3-fold increase in formed colonies over SAL 

control cells.

To test for enhanced cell motility, all subchronic SAEC lines were assessed for invasion and 

migration ability. Both D-SWCNT and D-MWCNT cells demonstrated a significant 4.7-fold 

increase in 48-h cell invasion and a 2–2.5-fold increase in 24-h cell migration as compared 

to the control cells (Figure 3C and Figure S2). ASB SAECs showed a significant increase in 

invasion ability but no significant change in migration ability compared to DISP cells.

Lastly, we assessed angiogenic potential of D-UFCB, D-SWCNT, D-MWCNT and ASB 

SAECs compared to parental, SAL and DISP control SAECs. Conditioned media from D-

SWCNT, D-MWCNT, ASB and SAL SAECs caused a significant increase in tube 

formation while UFCB and parental SAECs exhibited a significant decrease compared to 

DISP SAECs (Figure 3D). Increased angiogenic potential in SAL cells compared to DISP 

control cells was possibly due to increased mRNA expression of HIF1α, VEGF and p65NF-

κB (microarray data described below) which was not observed for CNT-exposed cells. In 

summary, the increased expression of several cancer hallmarks (i.e. cell proliferation, soft 

agar colony formation, migration, invasion and angiogenesis) in both D-SWCNT- and D-

MWCNT-exposed cells suggests that subchronic CNT exposure elicits a more aggressive 

epithelial lung cell neoplastic-like transformation effect than asbestos, suggesting increased 

risk for CNT-induced carcinogenesis.

D-SWCNT and D-MWCNT SAECS display substantially different genome signatures from 
asbestos SAECs

To assess potential neoplastic-like transformation mechanisms and to compare genome 

expression signatures of SAECs subchronically exposed to CNTs vs. asbestos, collected 

mRNA from all exposed and control SAECs were subjected to whole-genome expression 

microarray profiling. Following mRNA hybridisation and DEG determination, hierarchical 

clustering (HC) heat map expression signature and PCA showed that D-SWCNT- and D-

MWCNT-transformed SAECs possessed the most similar toxicogenomic signatures, which 

were clearly distinct from ASB cells (Figures 4A and B). In addition, DISP and D-UFCB 

SAECs showed similar expression signatures, which were loosely clustered with ASB 
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SAECs. Conversely, SAL SAECs possessed a unique expression signature, which differed 

from all other cell lines. PCA explained 75.8% of the variance in the first three components 

and confirmed the HC analysis of treated SAECs.

D-SWCNT and D-MWCNT SAECs experienced altered cell death, proliferation, mobility and 
development signalling

To identify signalling pathways associated with CNT-induced potential neoplastic-like 

transformation compared to asbestos, all DEG data were subjected to IPA Core Analysis. 

Top-ranked cellular/molecular functions, disease functions and signalling networks were 

used to identify GSNs contributing to a potential neoplastic-like transformation phenotype. 

Both D-SWCNT and D-MWCNT SAECs displayed large alterations in DEGs associated 

with cell proliferation, movement, cell death, development and cell–cell signalling (Figure 

5A). Cell development signalling associated with connective tissue development was 

predicted as activated in D-SWCNT SAECs (*, Z ≥ 2). Further analysis of the cell death 

function revealed that a large majority of the altered DEGs were associated with apoptosis. 

In addition, a majority of cell movement and development signalling in both D-SWCNT and 

D-MWCNT was associated with decreased gene expression of inflammatory cytokines and 

chemokines involved with leukocyte recruitment (†; Z ≤ −2). ASB SAECs showed similar 

pattern in cell-death- and proliferation-related DEGs. Upon further analysis of those 

functions predicted as activated in ASB (*), a majority of these genes were associated with 

cell function (phagocytosis), inflammatory signalling and leukocyte cell functions. SAL 

cells exhibited changes in cell proliferation, death and development with predicted 

activation of endothelial cell development (*). Lastly, D-UFCB cells possessed large 

changes in cell proliferation, cell assembly, cell function and cell death signalling with a 

majority of these genes down-regulated. Cell invasion/migration, cell proliferation, 

neoplasia and cell attachment signalling were predicted as inhibited (†) while cell death/

senescence and homing of phagocytes/neutrophils were predicted as activated (*, Figure 

5A).

Subchronic exposure to SWCNT and MWCNT altered gene expression, inflammation-
related signalling and lipid metabolic signalling

In evaluating top-ranked molecular functions, D-SWCNT cells exhibited significant 

alterations in gene expression, post-translational modification and lipid metabolism (Figure 

5B). D-MWCNT showed the most significant alterations to gene expression and predicted 

activation of lipid metabolism/transport (*). Conversely, ASB cells displayed a 2–5-fold 

decrease in DEGs associated with gene expression and a comparable number of post-

translational modification, small molecule metabolism and transport DEGs to D-MWCNT. 

SAL and D-UFCB cells exhibited the largest number of DEGs in gene expression. Only D-

UFCB and ASB cells possessed a substantial number of DEGs associated with DNA 

recombination and repair. ASB SAEC post-translational modification, amino acid 

metabolism, antigen presentation and molecular transportation were all predicted as 

activated (*). In summary, HAR fibres showed similar alterations in cellular functions, but 

exhibited strikingly different molecular functions, which were primarily driven by 

differences in lipid metabolism and inflammatory signalling.
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Subchronic CNT exposure altered TNFR signalling, reduced immune response and altered 
cancer-related canonical pathways

To further uncover altered signalling pathways, top-ranked disease functions and canonical 

pathways were investigated for promotion potential of neoplastic-like phenotype. Cancer 

was the top-ranked disease for all five cell lines compared to DISP control cells (Table S2); 

however, genetic disorder was pronounced for both D-SWCNT and D-MWCNT genome 

expression signatures. All top-ranked organ system diseases were specific cancer types for 

all exposure treatments except ASB cells. Inflammatory response, arthritis disease and 

immunological disease were highly ranked in ASB cells, but were absent from top-ranked 

CNT disease functions. IPA predicted cancer inhibition (†) in D-UFCB cells while it 

predicted activation (*) of inflammatory response/disease in ASB cells. Investigation of top-

ranked canonical pathways revealed that D-SWCNT SAECs exhibited changes in altered 

apoptotic, decreased inflammatory (NFKB2, Ikk) and cancer-related signalling (Table III). 

For both D-SWCNT and D-MWCNT cells, CASP2, CASP3 and CASP8 were over-

expressed, while pro-apoptotic BID, BAD and HTRA2 were under-expressed, thus 

suggesting altered apoptosis signalling. Down-regulated p100/p52 NF-κB (NFKB2) was a 

common player in many of the top-ranked canonical pathways for both D-SWCNT and D-

MWCNT. D-MWCNT showed similar rankings; however, down-regulation of many genes 

in the complement system (BF, C3b, C4b; over-expressed CD55) and chemokines in IL-17 

signaling (CXCL1–3, IL8, CCL2) took precedence. Conversely, ASBSAECs exhibited 

altered fibrosis, TREM and clathrin-mediated endocytosis signalling. Increased NF-κB 

inflammatory fibrosis signalling was evident resulting in increased cytokine expression (IL8, 

CCL2). Over-expressed ITGB2, SRC and PI3K with under-expressed clathrins indicated an 

integrin-mediated uptake of asbestos fibres. Over-expressed interleukins, tolllike receptors 

and phospholipase C (e.g. IL1B, TLR2, PLCγ2) indicated activation of NF-κB inflammatory 

signalling. Surprisingly, several complement proteins down-regulated in CNT-exposed cells 

were also down-regulated in ASB cells. SAL cells possessed over-expressed fibrosis 

signalling (COL1A1, PDGFRα/β, FGFR, VEGF, MMP2) and inflammation (IL6, IL8, 

RELA, MCP-1) that dominated a majority of the top-ranked pathways. Conversely, D-UFCB 

demonstrated down-regulation of fibrosis (TGFBR1, SMAD2, IL6, VEGF, CSF1, CCL2 and 

MMP2), WNT pathway and polo-like kinase signaling (APC, CCNB2, PLK, SLK) indicating 

a reduced ability to proliferate and contribute to a particle-induced fibrotic response. In 

summary, both D-SWCNT and D-MWCNT SAECs exhibited altered apoptosis signalling, 

cancer-related signalling and decreased inflammatory signalling, which differed from ASB 

and SAL SAEC pro-inflammatory signalling.

Gene signalling analysis reveals cancer-associated signalling in D-SWCNT and D-MWCNT 
cells which differed from ASB cell signalling

Evaluation of top-ranked GSNs revealed several gene hubs known to exhibit pro-cancer or 

tumour-associated signalling in both D-SWCNT and D-MWCNT (Table IV). Ap-1 (FOS)-, 

MYC-, NFKB2-, PPARG- and INHBA-centred GSNs were common in both D-SWCNT and 

D-MWCNT SAECs promoting altered gene expression, lipid metabolism, cell proliferation 

and cell movement. Although more associated with D-MWCNT, both D-CNT SAECs 

displayed GSNs with altered actin, tubulin and collagen expression, suggesting a 
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remodelling of intra- and extracellular structure and function. In addition, several GSNs 

centred on altered histone expression (e.g. histone deacetylases, histones 1 and 3), 

suggesting either epigenetic modifications and/or alterations to chromosome structure and 

integrity. ASB SAECs exhibited a drastically different ranked GSN profile compared to both 

D-CNT SAECs. ASB cells exhibited over-expressed SRC, SPI1, TREM1 and NF-κB 

signalling with decreased hCG and PRKACB GSN hubs associated with cell assembly/

maintenance, molecular transport, inflammatory response and cell–cell signalling. SAL 

SAECs exhibited a few similar expression profiles of several genes (Table IV; e.g. over-

expressed FOS); however, over-expression of RELA and TP53 in SAL SAECs appeared to 

dominate several top-ranked SAL GSNs. Top-ranked GSNs in D-UFCB highlighted 

decreased cell development (GAS7), cell maintenance, lipid metabolism and cell cycle 

(TP53). With a lack of neoplastic-like transformation behaviour, the SAL SAECs appeared 

to undergo a moderate in vitro non-neoplastic transformation associated with increased p53 

and inflammatory NF-κB signalling following 6 months of continuous passage.

GSN analysis reveals distinct CNT pro-cancer signalling which differs from pro-
inflammatory signalling in ASB cells

Based on aggressive neoplastic-like transformation phenotype and identification of several 

signalling pathways associated with carcinogenesis, cancer-associated GSNs were 

constructed in IPA to further identify potential complex signalling pathways in both D-

SWCNT and D-MWCNT compared to ASB SAECs. Large complex pro-cancer networks 

for both D-SWNCT and D-MWCNT were characterised by proliferation, tissue 

development, cell movement and suppressed immune signalling, while ASB cell signalling 

was primarily driven by pro-inflammatory signalling (Figures S3–S5). By applying a strict 

filter to show only gene expression solely promoting cancer, D-SWCNT pro-cancer GSN 

revealed over-expressed NRAS, MYC, FOS, CASP8, COL18A1, CDKN2A and under-

expressed CSF2, CCL2 hub genes associated with cell proliferation and tissue morphology 

(Figure 6A). D-MWCNT pro-cancer GSN revealed a smaller network centred on over-

expressed MYC associated with cell proliferation and cell movement (Figure 6B). 

Conversely, the ASB SAEC pro-cancer GSN possessed over-expressed IL1B, SPI1, CASP8, 

CD44, several inflammatory chemokines, including CCL2, IFNA21, and BCL2L11, with 

under-expressed CXCL2, FN1, MMP2 and CSF1 (Figure 6C). Cell proliferation, cancer and 

tissue morphology behaviour were associated with the ASB pro-cancer GSN. In summary, 

subchronic D-SWCNT and D-MWCNT exposure resulted in cancer-promoting signalling 

profile with known oncogenes in SAECs which differed from a pro-inflammatory signaling 

prolife in asbestos-exposed SAECs.

mRNA and protein expression validation of key tumourigenic signalling molecules

Following IPA analysis and identification of hub genes associated with potential 

tumourigenesis, a subset of key signalling molecules of interest for D-SWCNT, D-MWCNT 

and ASB cells were chosen to further investigate whether their protein expression matched 

the microarray and their potential as key players contributing to lung epithelial cell 

neoplastic-like transformation and potential lung carcinogenesis. rtPCR validation (Figure 

7A) confirmed a majority of microarray expression values of key genes. Other significantly 
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different rtPCR values were noted but were either over- or under-expressed in large 

magnitude, which matched the expression trends in the microarray.

Western blot analysis showed that D-SWCNT, D-MWCNT and ASB possessed over-

expressed cFOS, c-Myc and PPARγ levels (Figure 7B), while the tumour suppressors 

Inhibin α and p53 were under-expressed (Figure 7C). We probed for p-p53 to evaluate if the 

p53 decrease was a function of loss of phosphorylation at serine 15 previously shown for 

SWCNT-transformed lung epithelial cells (Wang et al. 2011b). P-p53Ser15 levels were 

increased above SAL, DISP and D-UFCB levels, suggesting partial protection against p53 

proteasomal degradation in D-SWNCT, D-MWCNT and ASB SAECs. Given caspase 8′s 

prominence in the GSN analyses and known roles in cancer signalling, blots for pro-caspase 

8 (57 kD) showed over-expression in D-SWCNT, D-MWCNT and ASB compared to both 

SAL and DISP control cells. Over-expression of N-terminal cleavage product (43 kDa) 

above pro-caspase 8 levels was apparent across all cell types except D-UFCB cells. Active 

caspase 8 (18 kDa) was not detected in any cell types. Next, we evaluated the status of NF-

κB levels in the CNT- and ASB-transformed SAECs to evaluate whether differences 

between ASB and CNT inflammatory signalling were partially due to NF-κB expression. 

Both p100 and p52 NFKB2 subunits were diminished in D-MWCNT and ASB cells 

compared to SAL and DISP cells (Figure 7D). D-SWCNT cells exhibited a substantial 

reduction in the p100 subunit compared to all other cell types. In agreement with microarray 

data, we found that both SAL and DISP had greater p65 NF-κB (RELA) levels than D-

SWNCT, D-MWCNT and ASB cells. In addition, increased phosphorylation of IKKα/β was 

found in both D-SWCNT and D-MWCNT, suggesting degradation of NF-κB. To evaluate 

potential pro-inflammatory signalling in ASB cells, we evaluated protein expression for 

several key gene signalling hubs. D-UFCB, D-SWCNT, D-MWCNT and ASB cells 

possessed over-expressed levels of IL-1β compared to both SAL and DISP controls with 

ASB displaying the highest IL-1β expression. ASB cells over-expressed both IL-8 and SPI1 

compared to DISP cells, while both D-SWCNT and D-MWCNT possessed basal low 

expression level (Figure 7E). In summary, protein expression analysis confirmed a majority 

of the microarray expression data and displayed several differences between CNT SAECs 

and ASB SAECs.

Discussion

Current and future CNT manufacture for use in many different industrial, medical and 

consumer products requires adequate research into benefits and health risks associated with 

these unique HAR nanomaterials. Given their physicochemical property and biological 

effect similarities to asbestos fibres, increased concern over a CNT-induced lung 

carcinogenesis has been identified. A preliminary inhalation exposure study recently 

reported that MWCNT promote lung carcinogenesis in a mouse initiation/promotion tumour 

model (Sargent et al. 2013). However, it is not known how different physicochemical 

properties of CNTs influence the potential for lung cancer development and whether these 

mechanisms are similar to asbestos. This study exposed human SAECs, a major target of 

inhaled CNT (Mercer et al. 2010), to a subchronic occupational relevant dose of dispersed 

SWCNT, MWCNT and crocidolite asbestos to compare particle property-dependent cancer-

like behaviour and changes in toxicogenomic expression signatures. By identifying 
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signalling mechanisms associated with neoplastic-like transformation, comparisons of 

physicochemical properties of CNTs to a well-known carcinogenic HAR fibre can be made 

and lends urgently needed information for human health risk assessment.

Subchronic CNT exposure results in a distinct CNT-associated neoplastic-like 
transformation and proto-oncogene signalling

This study provides novel evidence supporting CNT-associated lung neoplastic-like 

transformation upon long-term in vitro exposure which differed from crocidolite asbestos. 

Subchronic (6-month) exposure of 0.02 μg/cm2 dispersed SWCNT and MWCNT to SAECs 

resulted in increases in several cancer hallmarks including proliferation, morphological 

transformation, anchorage-independent growth, invasion/migration and angiogenesis 

compared to DISP control cells. Aggressive neoplastic-like behaviour correlated with 

several cancer-associated GSNs, pathways and key proto-oncogenes associated with cell 

proliferation, cell movement, cell death and lipid metabolism which largely differed from 

pro-inflammatory genome expression signature and protein expression in ASB SAECs. The 

moderate inflammation signature in SAL control cells (NF-κB and VEGF) compared to 

DISP cells likely stemmed from long-term passage and the absence of lung surfactant, a 

known inflammation suppressor (Wright et al. 2004). Previously, both SWCNT and 

MWCNT particles used in this study were shown to cause centrosome fragmentation, 

mitotic spindle disruption and aneuploidy in human small airway and bronchial epithelial 

cells during acute exposures (Sargent et al. 2009; Sargent et al. 2012) which are typically 

observed in cancer cells. Furthermore, these same CNTs were found to induce K-ras 

mutations following inhalation exposure in mice (Shvedova et al. 2008). Collectively, these 

results satisfy three out of the four major criteria for neoplastic transformation (OECD 2007; 

Creton et al. 2012) minus in vivo tumourigenesis after injection. These xenograft studies are 

currently underway at NIOSH.

Increased TF and altered morphology of both D-CNT cells vs. ASB cells provided the first 

evidence of a distinct CNT transformation effect. Morphological transformation evidenced 

by small Type III foci in both D-SWCNT and D-MWCNT cells correlated with 

transformation frequencies of Balb/3T3 cells exposed to functionalised MWCNT for 72 h 

(Ponti et al. 2012). Gross morphological assessment revealed CNT exposure-associated 

increase in the number of SAECs possessing multiple intracellular vesicles surrounding the 

nucleus. Their close association to the nucleus, Golgi apparatus and lysosomes suggests that 

these bodies are potentially associated with endocytotic uptake response to nanomaterial 

exposure, general xenobiotic exposure (Al-Jamal et al. 2011) or associated with enhanced 

synthesis/trafficking of intracellular material (i.e. lipid metabolism). Further evaluation of 

the potential role of this unique morphological characteristic is currently underway in our 

laboratory.

Several recent reviews on ENM toxicology have called for use of whole-genome/proteome 

expression assessments to help identify potential health risks associated with ENM 

exposure. Phenotypic anchoring of organismal or tissue behaviour with whole-genome 

expression signature profiling can determine differences between xenobiotic exposures and 

identify novel mechanisms of action (Ganter & Giroux 2008). Here, employment of whole-
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genome expression signature profiling following subchronic in vitro CNT exposure revealed 

novel signalling networks with known neoplastic effects in D-CNT cells with some stark 

differences to ASB cell neoplastic-like transformation signalling. Prior studies with acute 

SWCNT- and MWCNT-exposed cells displayed DNA damage, activated MAPKs, AP-1, 

NF-κB and Akt, all of which recapitulate key molecular events involved in asbestos-induced 

mesothelioma (Sharma et al. 2007; Chou et al. 2008; Pacurari et al. 2008a; Pacurari et al. 

2008b; Lindberg et al. 2009; Hirano et al. 2010; Ponti et al. 2012; Sargent et al. 2012). 

Acute studies directly comparing different CNT morphologies to asbestos report greater 

SWCNT cytotoxicity than MWCNT while MWCNTs exhibit similar fibrotic effects in 

fibroblasts (Tian et al. 2006; Mishra et al. 2012). In addition, increased inflammatory 

signalling, altered actin cytoskeleton and cell morphogenesis in bronchial epithelial cells are 

known (Kim et al. 2012). These studies suggest that initial, acute lung epithelial response is 

largely dominated by inflammatory and fibrosis signalling.

Here, subchronic CNT exposure resulted in alteration of proto-oncogenes both observed in 

asbestos-associated lung disease and unique to CNT-exposed cells. Over-expression of 

MYC, PPARG, CASP8 and COL18A1 as major hub genes in both D-CNT SAEC cancer 

GSNs suggests a proto-oncogene-dominated genotype compared to ASB SAEC's pro-

inflammatory genotype centred on over-expressed IL-1B, CCL2, SRC and SPI1. Up-

regulation of c-Myc, fra1 and bcat in mesothelioma in rats following asbestos intraperitoneal 

injection (Sandhu et al. 2000) parallels over-expression of MYC, FOS and BCAT1 in D-

SWCNT cells and MYC in D-MWCNT cells in the present study. MYC over-expression 

potentially represents a common response to HAR particles or a generalised response to 

xenobiotics since its acute over-expression drives apoptosis and other cell stress responses. 

Its persistent over-expression, however, is a well-established cancer promotion signal 

(Varella-Garcia 2010).

Key genes identified in the D-CNT cell GSN analysis exhibited mRNA and protein 

expression correlating with known cancer function. Several top up- and down-regulated 

genes were associated with extracellular matrix, cell motility and morphology. ANTXR1 and 

LAMA4 over-expression potentially contributed to enhanced invasion ability in CNT and 

ASB SAECs (Huang et al. 2008; Cullen et al. 2009). Conversely, large down-regulation of 

COL1A1, a known lung fibrosis marker, and PLAU with over-expression of COL18A1 and 

several basal collagens (collagens IV, V and VI; data not shown) suggests a shift towards 

basal ECM adhesion and potential motility enhancement. Over-expression of COL18A1 and 

collagens IV, V and VI is associated with poor clinical outcome in NSCLC patients and 

promotes cancer cell survival (Iizasa et al. 2004). INHBA and ATM, two anti-proliferation 

tumour suppressors commonly mutated in lung cancer (Ding et al. 2008), were down-

regulated in D-CNT SAECs. Over-expression of BCL2L2, CASP8, FOS and MYC suggests 

substantial changes to survival, cell stress and cell death signalling pathways in CNT- 

exposed SAECs. Although CASP8, FOS and MYC are involved in cellular stress response 

with known cell death signalling roles, they also display several tumour promotion functions 

including mitochondria stimulation, cell proliferation, migration and transformation and 

exhibit increased expression in lung cancer (Heintz et al. 2010; Varella-Garcia 2010; Kamp 

et al. 2011; Kober et al. 2011).
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Decreased p53 expression with enhanced phospho-p53 (Ser15) suggests that subchronic 

CNT and ASB exposure suppressed basal p53 expression. Down-regulation (e.g. ATM) and 

up-regulation (e.g. POLK, MGMT) of DNA repair genes with decreased basal p53 

expression in D-SWCNT SAECs suggest an altered ability to respond to potential DNA 

damage. However, enhanced Ser15 phosphorylation suggests an active tumour suppressor 

function by allowing binding to p300 or binding directly to DNA damage sites (Shanaz et al. 

2005). This contradicts our previous finding in SWCNT-exposed BEAS-2B cells showing 

decreased phosphorylation (Wang et al. 2011b) potentially due to a weakened p53 following 

BEAS-2B immortalisation.

CNT subchronic exposure increases lipid metabolism signalling and PPARG over-
expression

Subchronic SWCNT and MWCNT exposure caused large alterations in lipid metabolism 

suggesting that CNTs may drastically alter many energy, proliferation and oxidative stress 

pathways that rely on fatty acids and sterols. Few studies have acknowledged the role that 

CNT exposure may have in affecting lipid peroxidation, lipidomic response and lipid 

metabolic pathways in cells (Shvedova et al. 2012). Lipid peroxidation is known to activate 

peroxidation detoxification pathways including the peroxisome proliferator-activated 

receptors (PPARs). PPARs regulate lipid metabolism, retinoic acid signalling and are 

implicated in either promoting or inhibiting carcinogenic signalling in lung cancer. PPARG 

expression is typically observed in adipocytes, possesses potent anti-inflammatory 

properties and is a known prognostic marker in lung cancer with it over-expression 

indicating a favourable prognosis (Szanto & Nagy 2008; Peters et al. 2012). Over-

expression of PPARG in both D-SWNCT and D-MWCNT SAECs suggests a potential role 

that lipid signalling and metabolism may play in these cells. Down-regulated NFKB2, a key 

hub gene in several top-ranked D-SWCNT and D-MWCNT GSNs associated with lipid 

metabolism (Table IV), suggests a potential relationship between PPARG, NFKB2 and an 

anti-inflammatory genome expression signature. In addition, PPAR family activation 

promotes expression of several genes (i.e. HMGCR) that contributes to cancer promotion via 

lipid and cholesterol synthesis (Peters et al. 2012). Future studies should evaluate both lipid 

metabolism and PPAR expression to evaluate the role that CNT-induced alterations to 

cellular lipid peroxidation levels, lipid metabolism and suppressed immune function have on 

pulmonary tissue.

Differences in physicochemical properties impact nanomaterial neoplastic-like effects

Knowledge-based mapping of cancer GSNs identified a pro-inflammatory dominated 

genome expression signature in ASB SAECs which was largely absent in both D-CNT 

SAECs. Pulmonary exposure to HAR fibres results in an acute inflammatory response and 

infiltration of polymorphonuclear leukocytes and macrophages. Due to their long length, 

frustrated phagocytosis and activation of the NLRP3 inflammasome ensue (Palomaki et al. 

2011). Protein over-expression of IL1B and CCL2 is typically observed in lung lavage fluid 

following asbestos and CNT in vivo exposures (Jacobsen et al. 2009; Shvedova et al. 2005; 

Shvedova et al. 2008). Prolonged release of pro-inflammatory mediators results in activation 

of NF-κB and its downstream targets. Present hypotheses for ASB-mediated carcinogenesis 

focus on activation of tumour promotion signalling pathways via ROS generation and 
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chronic inflammation (Nymark et al. 2007; Kamp 2009; Heintz et al. 2010; Kamp et al. 

2011). Toxicogenome expression analysis of acute in vitro asbestos-exposed lung epithelial 

and mesothelial cells identified altered or enhanced NF-κB regulation, thioredoxin, Bcl-2, 

integrin, collagen, p53, caspase 8, c-Myc and Nrf2 signalling, most of which are known to 

occur in asbestos-associated lung cancers (Nymark et al. 2007; Hevel et al. 2008). Here, our 

subchronic exposure study's findings largely support a pro-inflammation hypothesis for 

asbestos-induced neoplasm and supplies additional novel insight for several key GSNs 

associated with such response. Top-ranked ASB GSNs and canonical pathways with over-

expression of several integrin signalling genes (ITGB2, SRC, TREM1, PI3K) with down-

regulated clathrins suggested adaptation to active uptake of asbestos fibres via integrin 

signalling and activation of NF-κB inflammatory pathways (Kamp 2009). Cell proliferation, 

cancer and tissue morphology behaviour were associated with the ASB pro-cancer GSN, 

suggesting an up-regulated inflammation response (Dostert et al. 2008). SPI1 over-

expression, a known regulator of haematopoiesis and leukocyte differentiation, with its 

association with several inflammatory genes suggests that it contributed to ASB cell 

neoplastic-like behaviour and was recently identified as a potential squamous lung cancer 

marker (Bai & Hu 2012). To our knowledge, this is the first time SPI1 has been implicated 

in an asbestos-induced neoplastic-like mechanism. Many of the major expression changes 

observed in D-CNT SAECs were also observed in ASB SAECs (e.g. over-expressed CASP8, 

MAP3K1, CD44 and c-Myc protein), albeit to a lesser extent. In conclusion, GSN analysis 

of the ASB cell signature overwhelming supported a pro-inflammatory signalling associated 

with several cancer hallmarks while the D-CNT cell signature favoured a large decrease in 

the innate immune system and NF-κB.

Conversely, subchronic UFCB exposure resulted in a non-neoplastic phenotype 

characterised by slow proliferation, low soft agar colony formation and a genome expression 

signature consistent with enhanced cell death, reduced neoplasia and reduced attachment 

ability. Prolonged UFCB exposure results in alveolar deposition, interstitial penetration, 

pulmonary inflammation and epithelial cytotoxicity leading to lesions and fibrosis (IARC 

2010). UFCB is listed as a Group 2B possible human carcinogen with no clear risk of human 

lung cancer development in the occupational setting; however, female murine inhalation 

exposure studies found increased risk for lung cancer (Borm et al. 2004). Our in vitro study 

differs from previous human and murine bronchial epithelial cell in vitro studies. Following 

relatively high exposure doses, cells exhibited increased ROS production, proliferation, 

kinase activation, epithelial growth factor receptor activation and weak mutagenesis 

(Tamaoki et al. 2004; Jacobsen et al. 2007). Although these studies suggest toxicological 

effects typical of known carcinogens, their reported acute or subchronic exposure doses 

were 17.6–2000 times greater than those tested in the present study. UFCB-induced ROS 

production leading to DNA damage is more likely due to an indirect mechanism via the 

‘particle overload’ phenomenon and low clearance rates in both in vivo murine and in vitro 

exposure assessments (Oberdorster 2002; IARC 2010). In this study, the subchronic, low-

dose exposure regime potentially did not result in a UFCB ‘particle overload’ mechanism 

leading to a neoplastic-like phenotype.
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Differences in exposed cell behaviour, toxicogenome signatures and signalling pathways are 

potentially due to several physicochemical differences among particle types. HAR, 

presence/absence of metal impurities, major components (carbon vs. silica), surface area, 

uptake ability and internal dosimetry possibly contributed to the observed differences among 

exposed cells. High doses of long, thin MWCNTs compared to short and tangled MWCNTs 

were shown to cause increased damage and increased risk for mesothelioma (Nagai et al. 

2011). CNTs containing large or minute amounts of metal catalysts caused enhanced ROS, 

inflammation and cytotoxicity both in vitro and in vivo (Lam et al. 2004; Shvedova et al. 

2009; Hirano et al. 2010; Azad et al. 2012; Shvedova et al. 2012). Recent studies evaluating 

ENM dosimetry have repeatedly shown that surface area is a contributing factor to observed 

lung inflammation, fibrosis and potential carcinogenesis (Borm et al. 2004; Duffin et al. 

2007; Murray et al. 2012). Surface area-based ‘particle overload’ also may occur with CNTs 

since they possess low mass but high surface areas (Donaldson & Poland 2012). Here, 

dispersed SWCNTs possessed a 10–100-fold increase in surface area compared to all other 

dispersed particles, while MWCNTs possessed a 2.6-fold increase in surface area over 

asbestos fibres. A greater surface area for SWCNTs and MWCNTs potentially contributed 

to the enhanced cancer hallmark behaviour compared to other treatment groups. UFCB's low 

aspect ratio with comparable surface area to MWCNTs suggests that HAR is a compelling 

factor in CNT toxicity (Donaldson et al. 2010). Conversely, qualitative analysis of particle 

uptake showed that a high number of dispersed MWCNT were co-localised with SAEC 

compared to equal doses (μg/cm2) of other particles, which suggests the need to evaluate 

how ENM internal dosimetry drives short- and long-term health effects. Regardless of 

physicochemical and uptake differences, both D-CNT cells exhibited the most similar 

toxico-genome signatures and pro-cancer signalling networks. This suggests that a long-

term, occupational exposure to a carbon-based nanofibre with relatively high surface area 

results in a neoplastic-like transformation effect that is unique from UFCB or asbestos 

fibres.

Potential suppressed immune response pathways following subchronic SWCNT and 
MWCNT exposure

Both D-CNT SAECs exhibited decreased gene expression in complement proteins, NFKB2 

and several known inflammation cytokines. Recent in vivo and in vitro studies have reported 

alterations and/or reductions in immune response following CNT exposure, possibly due to 

changes in lung cell signalling to the spleen, impaired macrophage function or excessive 

activation of complement proteins (Shvedova et al. 2008; Herzog et al. 2009; Mitchell et al. 

2009; Tkach et al. 2011; Anderson et al. 2012). MCP-1 (CCL2), a pulmonary inflammatory 

marker, consistently exhibits over-expression in mouse lung lavage following acute CNT 

exposure; however, a previous in vitro study found MCP-1 under-expression following 

SWCNT exposure (Herzog et al. 2009). Its decreased gene expression in D-CNT SAECs, 

along with other known inflammatory cytokines, suggests that inflammatory-related markers 

may only be relevant within short time frames following exposure. This is not a surprise 

since several studies show that the inflammatory response to CNT exposure is transient in 

vivo (Shvedova et al. 2005; Shvedova et al. 2012; Porter et al. 2010). Increased p-IKKa/B 

expression resulting in targeting p65 NF-κB and NFKB2 down-regulation suggests that 

continuous, low-dose CNT exposure results in reduced lung epithelial cell innate and 
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adaptive immune responses, respectively, potentially contributing to enhanced susceptibility 

to infection (Tkach et al. 2011). At present, the mechanism(s) driving a suppressed innate 

and inflammatory response following CNT exposure are unknown. Based on in vitro and in 

vivo results, future studies should focus on CNT and nanomaterial ability to weaken 

pulmonary immune response resulting in increased susceptibility to other insults.

Comparison to other in vitro transformation and in vivo toxicogenomic studies

Few in vitro studies have assessed prolonged, continuous exposure to CNTs compared to 

other well-categorised particles for potential health risks. This study contradicts the study by 

Thurnherr et al. (2011) that reported no long-term effects or adaptive mechanisms in A549 

cells following continuous MWCNT exposure for 6 months at the 0.16 μg/cm2. A549 cells 

were found to experience no changes in proliferation, morphology, ROS levels or cell death 

at 3 and 6 months post-exposure. Lung cancer, such as human A549 adenocarcinoma cells, 

exhibits several enhanced cancer hallmarks including enhanced cell proliferation and ROS 

levels (Azad et al. 2008). As such, they do not represent a normal, non-tumourigenic human 

airway epithelial cell to assess neoplastic transformation, but do serve as an appropriate 

acute exposure model for inflammation and cytotoxicity for particulate and CNTs (Herzog 

et al. 2009). Any MWCNT-induced changes were potentially masked or undetectable in an 

A549 cell model due to an already present malignant phenotype. Our previous study (Wang 

et al. 2011b) displaying SWCNT-induced neoplastic transformation in a non-tumourigenic 

bronchial epithelial cell (BEAS-2B) model coincides with the present study showing that the 

same SWCNT particles promoted increases in several cancer hallmarks.

Several recent published studies have reported in vivo proteomic and genetic responses 

following CNT exposure. Comparison of C57BL/6 mouse whole-lung proteomic responses 

to UFCB vs. SWCNT vs. asbestos at 24 h following a repeated aspiration exposure over 3 

weeks found that SWCNT exhibited a more potent but similar inflammatory response to 

equal mass of crocidolite asbestos (Teeguarden et al. 2011). Major protein expression 

changes in haematopoiesis, endocytosis, chemotaxis, immune response and leukocyte 

activation for both SWCNT and asbestos coincide with this study's ASB SAEC cell toxico-

genome signature. Agreement between both in vitro and in vivo profiling studies at 6-month 

and 3-week exposure time points, respectively, matches the chronic lung inflammation 

paradigm for asbestos and other HAR fibre lung disease (Kamp 2009; Broaddus et al. 2011). 

Two other biomarker studies screened known human lung cancer markers in whole mouse 

lung at 7–56-d post-exposure to aspirated MWCNT (Pacurari et al. 2011; Guo et al. 2012). 

These authors reported differential expression in 11 and 38 cancer-related gene subsets, 

respectively, in MWCNT-exposed lung and were associated with signal transduction, cell 

proliferation, cell cycle and cancer. Preliminary comparison of this study's CNT pro-cancer 

signalling results to gene markers from these two studies correlate poorly. This is due to 

potential differences in in vitro monolayer vs. whole lung in vivo response, species tested, 

time/dose differences and data set approach (i.e. whole-genome expression vs. human lung 

cancer marker set). Regardless, network analysis of an 11-gene biomarker set at 56-day 

post-exposure (Pacurari et al. 2011) did identify PPARG as a key signalling gene hub 

associated with other cancer and immune response signalling centred on tumour necrosis 

factor, interferon β and Bcl-2. Two genes, neuregulin (NRG1) and sonic hedgehog receptor 
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(PTCH1), did exhibit differential expression in both this and the two in vivo biomarker 

studies following CNT exposure suggesting the potential importance of lung development 

signalling following CNT exposure. A more detailed in vitro to in vivo comparison is 

currently underway in a follow-up study using the reported D-SWNCT and D-MWCNT cell 

expression signatures to identify potential gene markers for use in CNT exposure risk 

assessment.

Although our chronic in vitro model successfully identified known carcinogenic gene 

signalling in ASB SAECs and distinct CNT neoplastic-like mechanisms, care must be taken 

in interpretation and applicability of these results. SAEC-hTERT cells were chosen based on 

their wild-type p53 status, known CNT interaction in vivo and non-tumourigenic status; 

however, they do exhibit drops in p16 expression after continuous long-term passage (Piao 

et al. 2005). These immortalised cell models, however, may represent the in vivo human 

lung epithelial cell condition since many lung cancers exhibit mutations in p53 and p16 

(Ding et al. 2008). In addition, in vivo studies have shown that cell-to-cell signalling 

between epithelial, fibroblast and leukocyte cells following in vivo asbestos and CNT-

exposure is largely inflammatory in nature (Shvedova et al. 2005; Porter et al. 2010; 

Matsuzaki et al. 2012). The absence of cells capable of releasing pro-inflammatory or other 

cell damage cytokines/chemokines (i.e. macrophages) in our system must be taken into 

account when considering the large down-regulation of inflammation-associated genes in D-

SWCNT and D-MWCNT. Nevertheless, subchronic in vitro exposure models provide a 

rapid assessment tool to compare a multitude of different xenobiotics in a controlled manner 

and can assist in identifying mechanisms promoting disease.

Conclusion

Subchronic exposure of dispersed SWNCTs and MWCNTs to SAECs at doses relevant to 

those used in occupational exposure animal models resulted in a more aggressive, 

neoplastic-like phenotype than crocidolite asbestos, evidenced by increased levels in several 

cancer hallmarks: morphological transformation, proliferation, anchorage-independent 

growth, invasion, migration and angiogenesis. Furthermore, whole-genome expression 

profiling suggested that CNT-exposed cells possessed a distinct toxicogenomic signature 

compared to ASB cells, and that altered disease, cell, molecular and signalling pathway 

functions were consistent with known cancer cell signalling. CNT GSNs centred on 

increased expression of known lung cancer proto-oncogenes MYC and PPARG and 

decreased expression of known tumour suppressors (e.g. p53). Conversely, ASB cells 

exhibited pro-inflammatory signalling promoting established asbestos carcinogenesis 

pathways and mechanisms. Lastly, subchronic exposure to both D-SWCNT and D-MWCNT 

resulted in decreased NF-κB inflammatory signalling and complement protein expression 

that could potentially be linked to altered lipid metabolism and PPARG over-expression. 

This study's findings suggest that long-term CNT exposure to deep lung airway epithelial 

cells represents higher potential for carcinogenic risk than an equal dose of crocidolite 

asbestos, induces a CNT neoplastic-like transformation mechanism independent of known 

asbestos mechanisms, and possibly increases risk for lung infection due to innate immune 

system suppression. Follow-up studies using this data set will further identify CNT-

associated signaling mechanisms promoting lung cancer cell-like signalling. Further 
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implementation of chronic in vitro exposure model phenotype assessment coupled with 

toxicogenome expression profiling can identify key mechanistic differences and novel long-

term health risks for different types of nanofibres and nanomaterials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Visual characterisation of dispersed UFCB, SWCNTs, MWCNTs and crocidolite asbestos 

particle morphology and cellular fate in exposed human SAECs. A) Scanning electron 

microscope micrographs of dispersed particles. Dispersed UFCB (top left) and SWCNTs 

(top right) exhibited both nano-sized particles (white arrows) and micron-sized agglomerates 

(dashed arrow). MWCNTs (lower left) exhibited either single fibre or loosely tangled 

agglomerates while asbestos (lower right) existed as needle-like fibres. B) Hyperspectral 

dark-field microscopy micrographs of 24-h exposed SAEC to each dispersed particle. Cells 

were fixed and toluidine stained for contrast. Particles possess an intense white halo while 

stained cytoplasm and nucleus appears yellow and blue/purple, respectively. Nano-sized 

particles were co-localised to both cytoplasm and nucleus (solid while arrow) while micron-

sized agglomerates were associated with cytoplasm or acellular (dashed white arrows). 

SWCNTs, MWCNTs and asbestos fibres were observed to penetrate and co-localise with 

both cytoplasm and nucleus. Bar = 10 μm.
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Figure 2. 
Altered proliferation and morphological transformation in SAECs subchronically exposed (6 

months) to dispersed SWCNTs, dispersed MWCNTs or crocidolite asbestos. A) D-SWCNT 

and D-MWCNT cells showed greater density of cells at 48 h post-seeding than all other 

treatments. Bar = 500 μm. B) D-SWCNT and D-MWCNT cells possessed significantly 

greater CFE than DISP control and all other treatments while parental SAECs (pSAEC) 

exhibited low efficiency. C) D-SWCNT and D-MWCNT cells exhibited higher TF than all 

other treatments based on Type III foci counts (left). Type III foci (right; white arrows) 

exhibited deep basophilic staining, multi-layered cell growth and invasive growth into 

monolayer. All other groups demonstrated Type I foci with SAL and ASB cells occasionally 

displaying Type II foci. Bar = 1 mm.
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Figure 3. 
Subchronic exposure (6 months) to dispersed SWCNTs, MWCNTs and asbestos results in 

neoplastic-like transformation of SAECs compared to DISP control cells. A-1) Increased 

WST-1 proliferation activity, A-2) trypan blue exclusion cell number and B) soft agar 

colony formation in D-SWCNTs, D-MWCNTs and ASB cells compared to control cells. C) 

D-SWNCT and D-MWCNT cells possessed significantly greater Matrigel invasion and 

Transwell migration ability in growth factor-free medium than control and ASB cells. D) 

Enhanced angiogenesis tube formation behaviour of HUVEC cells exposed to conditioned 

media from D-SWCNT, D-MWCNT, ASB and SAL cell lines. Parental SAECs (pSAEC) 

displayed significantly lower angiogenic ability than DIPS cells. Columns with error bars 

represent mean ± SE. Three or more independent experiments were performed for each 

assay. * indicate significant difference vs. non-treated control.
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Figure 4. 
Unsupervised hierarchical cluster (HC) and principal component (PC) analysis of DEGs 

from cells subchronically exposed (6 months) to dispersed CNTs, asbestos and UFCB. A) 

D-SWCNT and D-MWCNT cells possessed similar genome expression signatures and 

differed substantially from asbestos-exposed, ultrafine carbon black and vehicle control 

signatures. B) PC analysis validation of HC analysis displaying differences between 

particle-exposed SAECs. C) Histogram comparison of up- and down-regulated DEGs 

compared to DISP control cells.
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Figure 5. 
Top-ranked (p-value) altered A) cellular and B) molecular functions in CNT, asbestos, 

UFCB and saline control SAEC cells following subchronic exposure. Numbers of up- and 

down-regulated DEGs for each function are shown. All treatments were compared to 

dispersant-only control (DISP) expression. * and † indicate those functions that were 

predicted as activated or inhibited (Z ≥ ±2), respectively.
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Figure 6. 
Cancer-promoting GSNs in A) D-SWCNT, B) D-MWCNT and C) ASB neoplastic-like 

transformed SAECs. DISP cell gene expression served as a comparative control. DEGs were 

first filtered for cancer-related activity. Next, genes that promoted cancer (over-expressed/

promoted cancer and under-expressed/inhibited cancer) were included in the pathway. 

Genes were mapped with known direct and indirect signalling associations using IPA. 

Yellow and blue indicate over- and under-expressed genes, respectively, while intensity 

indicates magnitude of fold change.
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Figure 7. 
rtPCR validation of microarray and Western blot analysis of key proteins driving D-

SWCNT and D-MWCNT vs. ASB cell neoplastic-like transformation signalling. A) 

Comparison of microarray to rtPCR expression of key transformation genes was performed. 

* indicates those rtPCR values that significantly differed from microarray gene expression. 

B) Over-expression of several proto-oncogenes associated with D-CNT and ASB cell 

signalling. C) Decreased tumour suppressor and increased caspase 8 expression in D-

SWNCT, D-MWCNT and ASB cells. D) Decreased NF-κB expression in D-CNT cells. E) 

Over-expressed inflammasome-associated chemokines and a developmental regulator in 

ASB cells.
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Table I

Physicochemical properties of particles chronically exposed to human SAECs.

Particle UFCB SWCNT MWCNT Crocidolite asbestos

Manufacturer/Source Cabot (Edison, NJ, USA) CNI, 
Houston, TX, 

USA

Mitsui & Company NIEHS, Kalahari desert

Catalog Reference Elftex 12 (furnace black) MWNT-7, Lot 05072001K28 CAS 12001-28-4

Synthesis Vapour-phase pyrolysis HiPCO Chemical vapor deposition Natural

Dry mean length (μm) n/a 1–4 8.19 ± 1.7 10

Dry mean width (nm) 37 1–4 81 ± 5 210

BET surface area (m2/g)* 43 400–1040 26 9.8

Dispersed mean length 
(μm)

0.93 1.08 5.1 10

Dispersed mean width (nm) 700 270 78 210

% carbon (w/w) >99 99 99 <1

% Metal impurities (w/w) <1 <1 0.78 50.9 for SiO2, 38.00 for 
other metals

Major metal impurities 0.0011% Fe 0.23% Fe 0.41% Na, 0.32% Fe 31.8% Fe, 5.3% Na, 0.8% 
Mg

References Cabot datasheet, Wang et 
al. 2010

Sargent et al. 
2009; Wang 
et al. 2010; 

Mishra et al. 
2012

Pacurari et al. 2008a; Porter et al. 
2010; Mishra et al. 2012

Msiska et al. 2010

*
Brunauer–Emmett–Teller nitrogen absorption method.
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Table II

In vitro assay conditions and endpoints used to assess neoplastic-like behaviour in human SAECs 

subchronically exposed to ultrafine carbon black, SWCNTs, MWCNTs and crocidolite asbestos.

In vitro assay Available growth area (cm2) Seeding density Duration Endpoint

CFE 28.2 300 7 days % of colonies

Morphological transformation 28.2 30,000 21 days Foci count

Cell proliferation 0.33 5000 24 h, 48 h WST-1 absorbance

Trypan exclusion assay (proliferation) 28.2 30,000 24 h, 48 h Live cell count

Soft agar colony formation 9.6 10,000 14 days Colony count

Invasion matrigel chemotaxis transwell 0.3 15,000 48 h Invaded cell count

Migration chemotaxis transwell 0.3 30,000 24 h Migrated cell count

HUVEC angiogenesis of SAEC conditioned medium 2.0 45,000 16 h Tube node count

Whole-genome expression profile 28.2 1,000,000 24 h mRNA expression
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Table III

Top-ranked canonical signalling pathways for saline (SAL), D-UFCB, D-SWCNT, D-MWCNT and ASB-

exposed SAECs compared to dispersant-only exposed cells.

Ingenuity canonical pathways −log(p-value) Ratio (%)

SAL

 Hepatic fibrosis/hepatic stellate cell activation 6.46 15.0

 Role of macrophages, fibroblasts and endothelial cells in rheumatoid arthritis 5.37 9.9

 IL-6 signalling 4.07 14.0

 Role of osteoblasts, osteoclasts and chondrocytes in rheumatoid arthritis 3.63 9.6

 Renin–angiotensin signalling 3.61 12.1

 GNRH signalling 3.60 11.0

 Xenobiotic metabolism signalling 2.96 8.6

 Atherosclerosis signalling 2.95 11.2

 CD27 signalling in lymphocytes 2.70 14.0

 LPS/IL-1-mediated inhibition of RXR function 2.68 8.7

D-UFCB

 Hepatic fibrosis/hepatic stellate cell activation 2.74 11.6

 Differential regulation of cytokine production in macrophages and T helper cells by IL-17A and IL-17F 2.63 27.8

 Mitotic roles of polo-like kinase 2.23 14.1

 Wnt/β-catenin signalling 2.20 10.3

 Basal cell carcinoma signalling 1.81 12.3

 Factors promoting cardiogenesis in vertebrates 1.64 10.5

D-SWCNT

 TNFR1/TNFR2 signalling 5.76 26.4

 CD27 signaling in lymphocytes 4.01 21.1

 Death receptor signalling 3.98 20

 Chronic myeloid leukaemia signalling 3.86 16.2

 LPS-stimulated MAPK signalling 3.56 17.1

 14-3-3-mediated signalling 3.55 15.8

 Angiopoietin signalling 3.39 17.6

 Myc-mediated apoptosis signalling 3.37 19.7

 4-1BB signalling in T lymphocytes 3.34 23.5

 Apoptosis signalling 3.14 15.6

D-MWCNT

 Complement system 3.24 20

 Role of IL-17A in arthritis 3.17 14.3

 TNFR1 signalling 2.98 15.1

 Aminosugars metabolism 2.76 9.17

 Type II diabetes mellitus signalling 2.61 8.75

 Atherosclerosis signalling 2.57 10.3

 LXR/RXR activation 2.55 10.8

 PTEN signalling 2.5 9.68
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Ingenuity canonical pathways −log(p-value) Ratio (%)

 TWEAK signalling 2.48 15.4

 LPS/IL-1-mediated inhibition of RXR function 2.48 8.22

ASB

 Hepatic fibrosis/stellate cell activation 8.08 13.6

 TREM1 signalling 5.30 15.2

 Clathrin-mediated endocytosis signalling 4.25 8.7

 Complement system 4.23 20.0

 CTLA4 signalling in cytotoxic T lymphocytes 3.99 11.2

 Leukocyte extravasation signalling 3.97 8.50

 Virus entry via endocytic pathways 3.82 11.0

 NF-κB signalling 3.74 8.52

 Axonal guidance signalling 3.68 6.0

 MSP-RON signalling pathway 3.31 13.7
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Table IV

Top-ranked GSN with gene hubs and functions for saline (SAL), D-UFCB, D-SWCNT, D-MWCNT and ASB 

cells compared to dispersant-only-exposed human SAECs.

Gene hub *,†,‡ IPA functions Score

SAL

 RELA↑ Cell death, embryonic development, immunological disease 38

 PRKCA↑, Histone h3 Ophthalmic disease, metabolic disease, psychological disorders 36

 CEBPA↑, PTPN6↓, peptidylpropyl isomerases↑↓ Connective tissue development, tissue development, gene expression 36

 VHL↑ Post-translational modification, drug metabolism, molecular transport 36

 VEGFA↑, FOXO1↓ Organ morphology, nervous system development, cardiovascular system 
development

36

 Akt Embryonic development, tissue development, developmental disorder 34

 FOS↑ Gene expression, genetic disorder, metabolic disease 32

 Caspases 2/8↑, VIM↑, PLA2G4A↑ Cardiovascular system development, cell morphology, carbohydrate 
metabolism

32

 TP53↑, RELA↑, MMP2↑ Genetic disorder, skeletal and muscular disorders, cellular proliferation 31

 PTK2↑, Cadherins↑, Collagens↑↓ Cellular movement, connective tissue disorders, genetic disorder 28

D-UFCB

 GAS7↑, MAPK6↓, SF3A1 Cellular organisation, RNA post-translational modification, cellular 
development

47

 TP53↓ Lipid metabolism, small-molecule biochemistry, cell cycle 40

 NR3C1↓, NFYB↓, RNA polymerase Amino acid metabolism, small-molecule biochemistry, genetic disorder 38

 Akt, CAV2↓ Cellular organisation, cell signalling, cellular maintenance 36

 NFκB complex Cell signalling, amino acid metabolism, cellular organisation 34

 Histone H3↑, Histone 4 Infection mechanism, cellular development, cellular proliferation 34

 Erk 1/2, PPP2R5C↓ Cancer, reproductive system disease, nervous system function 28

 Jnk, Msn↓ Cancer, reproductive system disease, cell morphology 28

 SHH↑, RUNX2↓, Mapk↓ Cell cycle, cellular proliferation, connective tissue disorders 28

 CSF2↑, CSF1↓, BCL2↑, STAT5 Lymphoid tissue structure, organ development, cellular development 28

D-SWCNT

 FOS↑ Amino acid metabolism, small-molecule biochemistry, drug metabolism 40

 ARRB1↑, INHBA↓, SMAD5↑, ID2↓ Gene expression, genetic disorder, liver cirrhosis 38

 Vegf, Fsh, Ap1↑ Cellular proliferation, haematological function, carbohydrate metabolism 34

 NFKB2↓ Lipid metabolism, molecular transport, small-molecule biochemistry 32

 PPARG↑, LIF↓, SATB1↓ Cellular movement, embryonic development, reproductive function 32

 MYC↑ Amino acid metabolism, drug metabolism, small-molecule biochemistry 32

 FOXO1↑, Insulin, RXR retinoic acid Cardiac enlargement, organ morphology, cellular proliferation 28

 Clathrins↑↓, AMPH↓, Erk1/2 Infection mechanism, infectious disease, cancer 28

 Jnk↑, C1QBP↑, Snare↑↓ Dental disease, cell death, auditory disease 28

 POU5F1↓, UBE2D1↑, Ubiquitin Nervous system function, tissue development, RNA damage and repair 27

D-MWCNT

 NFKB2↓ Lipid metabolism, molecular transport, small-molecule biochemistry 40

 MYC↑, TAL1↓, CDC42↓ Cancer, haematological disease, immunological disease 36
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Gene hub *,†,‡ IPA functions Score

 Ck2, PPARG↑, Rxr Lipid metabolism, molecular transport, small-molecule biochemistry 35

 Actin↓, FOXA2↓, G-Actin↓, Tubulin↓ Cardiovascular function, organ morphology, DNA replication and repair 31

 E2F6↑, Alpha tubulin↓, Hdac↓, HIST1H4C↑ Cancer, dermatological diseases, gastrointestinal disease 30

 MMP15↓, IGF2↓, Collagen↑↓, Tgfb Cellular proliferation, tumour morphology, infection mechanism 28

 Collagen↑↓, COL1A1↓, PLAU↓, PI3K complex↑↓ Connective tissue disorders, genetic disorder, dermatological diseases 28

 F-Actin↑↓, Pkc(s), Filamin, SNAP25↓ Cellular movement, nervous system function, neurological disease 27

 CDK8↑, Histone H3↓, Mediator↑ Gene expression, amino acid metabolism, post-translational modification 27

 TNFSF10↑, Jnk, Ubiquitin, Ikb↓ Infection mechanism, cell death, cellular development 25

ASB

 SRC↑, SNAP25↓ Cellular assembly/organisation, cellular maintenance, molecular transport 39

 PRKACB↓, hCG complex↓ Cell signalling, molecular transport, nucleic acid metabolism 37

 IGF1R↓, FGFR1/2↓ Cell death, cellular maintenance, cellular development 35

 SPI1↑, Vegf, MHC Class II ↑ Inflammatory response, cellular assembly/organisation, cellular maintenance 32

 TREM1 ↑, HDAC11 ↓ Cell-to-cell signalling, haematological system development, inflammatory 
response

30

 NFκB complex Cell-to-cell signalling, haematological system development, haematopoiesis 29

 Akt, NCOR1 ↑ Drug metabolism, small-molecule biochemistry, gene expression 29

 Creb, PCNA ↓, MMP2 ↓, FN1 ↓ Cellular movement, tumour morphology, cellular development 29

 Erk, Tgfb, SMAD6/7 ↓ Cellular development, cellular proliferation, connective tissue development 27

 SNCA, Caspase Cell death, post-translational modification, protein folding 26

*
Direction of arrow indicates over- or under-expression. Bold and lowercase letters indicate genes and complexes, respectively;

†
Genes or complexes with no arrow represent signalling hubs that were not differentially expressed;

‡
Arrows (↑↓) represent multiple genes within a complex experiencing over- and under-expression, respectively.
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